Mostrar el registro sencillo del ítem

dc.contributor.advisorCasadiego Alzate, Rodolfo
dc.contributor.authorHernández Riaño, Javier
dc.coverage.spatialBogotá D.C.
dc.date.accessioned2025-02-21T13:52:54Z
dc.date.available2025-02-21T13:52:54Z
dc.date.issued2024-06-30
dc.identifier.urihttp://hdl.handle.net/10823/7582
dc.description.abstractEl turismo es una industria esencial para el desarrollo económico y social de los países principalmente en Latinoamérica. Colombia es un caso que ha explotado el potencial del turismo para generar ingresos, empleo y fortalecer su infraestructura operativa. A partir de lo anterior, el objetivo de esta investigación es identificar la asociación o concepto de turismo de Colombia a partir de las menciones disponibles en Twitter, una red social que permite conocer la percepción y la experiencia de los visitantes. En este trabajo se implementó una metodología de tres pasos: 1) Identificar palabras clave asociadas al turismo que fueron sugeridas por expertos y herramientas de inteligencia artificial generativa; 2) Transformar las palabras clave en hashtags y descargar los tweets más relevantes usando Scraping y 3) Analizar los tweets con técnicas de procesamiento de lenguaje natural y minería de texto para extraer los insights. Los resultados muestran que los hashtags creados para referir al turismo en Colombia se pueden relacionar de forma coherente con las campañas que ha desarrollado el país en diferentes momentos. Finalmente, se concluye que la integración de IA, redes sociales y minería de texto representan una combinación efectiva para comprender y fortalecer el concepto de turismo en Colombia y desarrollar colaboraciones entre las partes involucradas.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.titleConcepto de turismo en Colombia. Un análisis realizado a partir de las experiencias de los turistasspa
dc.typematerThesisspa
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.title.translatedConcept of tourism in Colombia. An analysis based on the experiences of touristsspa
dc.subject.proposalColombiaspa
dc.subject.proposalMinería de textospa
dc.subject.proposalTurismospa
dc.subject.proposalIAspa
dc.subject.lembPlataformas digitales - inteligencia artificialspa
dc.subject.lembSector turismospa
dc.subject.lembServicio al cliente - eficiencia operativaspa
dc.description.abstractenglishTourism is an essential industry for the economic and social development of countries, especially in Latin America. Colombia is a case that has exploited the potential of tourism to generate income, employment and strengthen its operational infrastructure. Based on the above, the objective of this research is to identify the association or concept of tourism in Colombia from the mentions available on Twitter, a social network that allows to know the perception and experience of visitors. In this work, a three-step methodology was implemented: 1) Identify keywords associated with tourism that were suggested by experts and generative artificial intelligence tools; 2) Transform the keywords into hashtags and download the most relevant tweets using Scraping and 3) Analyze the tweets with natural language processing and text mining techniques to extract insights. The results show that the hashtags created to refer to tourism in Colombia can be coherently related to the campaigns that the country has developed at different times. Finally, it is concluded that the integration of AI, social networks and text mining represent an effective combination to understand and strengthen the concept of tourism in Colombia.spa
dc.subject.keywordsColombiaspa
dc.subject.keywordsText miningspa
dc.subject.keywordsTourismspa
dc.subject.keywordsAIspa
dc.relation.referencesAkpatsa, S. K., Lei, H., Li, X., & Obeng, V. H. K. S. (2022). Evaluating Public Sentiment of Covid-19 Vaccine Tweets Using Machine Learning Techniques. Informatica, 46(1), 69–75. https://doi.org/10.31449/INF.V46I1.3483spa
dc.relation.referencesAlaei, A., Wang, Y., Bui, V., & Stantic, B. (2023). Target-Oriented Data Annotation for Emotion and Sentiment Analysis in Tourism Related Social Media Data. Future Internet, 15(4). https://doi.org/10.3390/fi15040150spa
dc.relation.referencesAlmeida, M. del A. (2019). Robots, artificial intelligence and virtual reality: An approach to tourism industries. Cuadernos de Turismo, 44, 13–26. https://doi.org/10.6018/turismo.44.404711spa
dc.relation.referencesAnderson, E. W. (2016). Customer Satisfaction and Word of Mouth. Journal of Service Research, 1(1), 5–17. https://doi.org/10.1177/109467059800100102spa
dc.relation.referencesBandeli, K. K., & Agarwal, N. (2020). Analyzing the role of media orchestration in conducting disinformation campaigns on blogs. Computational and Mathematical Organization Theory, 0123456789. https://doi.org/10.1007/s10588-018-09288-9spa
dc.relation.referencesBarreto, A. M. (2014). The Word-of-Mouth Phenomenon in the Social Media Era. International Journal of Market Research, 56(5), 631–654. https://doi.org/10.2501/IJMR-2014-043spa
dc.relation.referencesCancillería de Colombia. (2019). Así se construyen nuestros datos estadísticos. Flujos Migratorios.spa
dc.relation.referencesCarvache-Franco, O., Carvache-Franco, M., & Carvache-Franco, W. (2022). Coastal and marine topics and destinations during the COVID-19 pandemic in Twitter’s tourism hashtags. Tourism and Hospitality Research, 22(1), 32–41. https://doi.org/10.1177/1467358421993882spa
dc.relation.referencesChang, H. C. (2010). A new perspective on Twitter hashtag use: Diffusion of innovation theory. Proceedings of the American Society for Information Science and Technology, 47(1), 1–4. https://doi.org/10.1002/MEET.14504701295spa
dc.relation.referencesCock, B., & Pedraza, A. P. (2020). Claiming affective displays for forgotten places. Pragmatics, 30(2), 201–221. https://doi.org/10.1075/prag.18059.decspa
dc.relation.referencesColther, C., & Arriagada-Millaman, A. (2021). Forecast of Chile’s tourism demand based on linear and non-linear seasonal models. PASOS Revista de Turismo y Patrimonio Cultural, 19(2), 323–336. https://doi.org/10.25145/j.pasos.2021.19.021spa
dc.relation.referencesDadkhah, S., Shoeleh, F., Yadollahi, M. M., Zhang, X., & Ghorbani, A. A. (2021). A real-time hostile activities analyses and detection system. Applied Soft Computing, 104, 107175. https://doi.org/10.1016/j.asoc.2021.107175spa
dc.relation.referencesHervás, R., Arroyo, J., Francisco, V., Peinado, F., & Gervás, P. (2016). Influence of personal choices on lexical variability in referring expressions. Natural Language Engineering, 22(2), 257–290. https://doi.org/10.1017/S1351324915000182spa
dc.relation.referencesHickman, L., Thapa, S., Tay, L., Cao, M., & Srinivasan, P. (2022). Text Preprocessing for Text Mining in Organizational Research: Review and Recommendations. Organizational Research Methods, 25(1), 114–146. https://doi.org/10.1177/1094428120971683/ASSET/IMAGES/LARGE/10.1177_1094428120971683-FIG1.JPEGspa
dc.relation.referencesJun, J., Kim, J., & Tang, L. (Rebecca). (2017). Does Social Capital Matter on Social Media? An Examination Into Negative e-WOM Toward Competing Brands. Journal of Hospitality Marketing and Management, 26(4), 378–394. https://doi.org/10.1080/19368623.2017.1251869spa
dc.relation.referencesLango, M., Brzezinski, D., & Stefanowski, J. (2016). PUT at SemEval-2016 Task 4: The ABC of Twitter Sentiment Analysis. http://www.nltk.org/api/nltk.stem.htmlspa
dc.relation.referencesMarzo-Navarro, M., Pedraja-Iglesias, M., & Vinzón, L. (2018). Percepción de los residentes sobre el desarrollo de la micro región Tierra de Palmares desde la perspectiva del turismo rural integrado. Revista de La Facultad de Ciencias Agrarias, 50(2), 253–278.spa
dc.relation.referencesMatassi, M., & Boczkowski, P. J. (2020). Social media in ibero-America. Review article. In El Profesional de la Información (Vol. 29, Issue 1). El Profesional de la Informacion. https://doi.org/10.3145/epi.2020.ene.04spa
dc.relation.referencesMinisterio de Comercio, I. y T. (2023, November 10). Informes de Turismo. Ajuste de Cifra de Visitantes Extranjeros. https://www.mincit.gov.co/estudios-economicos/estadisticas-e-informes/informes-de-turismospa
dc.relation.referencesMinisterio de Industria, C. y T. (2013). Colombia, realismo mágico. https://procolombia.co/archivo/colombia-realismo-magicospa
dc.relation.referencesMinisterio de Industria, C. y T. (2020). Política de Turismo Sostenible: "Unidos por la Naturaleza” | MINCIT - Ministerio de Comercio, Industria y Turismo. https://www.mincit.gov.co/minturismo/calidad-y-desarrollo-sostenible/politicas-del-sector-turismo/politica-de-turismo-sosteniblespa
dc.relation.referencesMinisterio de Industria, C. y T. (2021). La nueva estrategia de promoción turística del país en el exterior | Sala de Prensa | PROCOLOMBIA. https://prensa.procolombia.co/la-nueva-estrategia-de-promocion-turistica-del-pais-en-el-exteriorspa
dc.relation.referencesMorales, J. R., Arévalo, D. V., Padilla, C. P., & Bustamante, M. A. (2018). Level of satisfaction and intention of repeating the touristic visit. the case of canton playas, in Ecuador. Informacion Tecnologica, 29(1), 181–192. https://doi.org/10.4067/s0718-07642018000100181spa
dc.relation.referencesMoreno Padilla, R. D. (2019). The arrival of artificial intelligence to education. Revista de Investigación En Tecnologías de La Información, 7(14), 260–270. https://doi.org/10.36825/riti.07.14.022spa
dc.relation.referencesNava Rogel, R. M., Mercado Salgado, P., Vargas Martínez, E. E., & Gómez Díaz, M. del R. (2017). El valor explicativo del turismo en las actividades con mayor contribución en el crecimiento económico de los municipios del Estado de México. El Periplo Sustentable, 33, 132–158.spa
dc.relation.referencesNieto Masot, A., Ríos Rodríguez, N., & Cárdenas Alonso, G. (2020). PLANIFICACIÓN TURÍSTICA EN EXTREMADURA. ANÁLISIS DE SUS TERRITORIOS TURÍSTICOS. Cuadernos de Turismo, 46, 291–317. https://doi.org/10.6018/turismo.451851spa
dc.relation.referencesPing-Tsan Ho. (2022). Smart Tourism Recommendation Method in Southeast Asia under Big Data and Artificial Intelligence Algorithms. Mobile Information Systems. https://doi.org/10.1155/2023/9807649spa
dc.relation.referencesRao, S., Verma, A. K., & Bhatia, T. (2021). A review on social spam detection: Challenges, open issues, and future directions. Expert Systems with Applications, 186(August), 115742. https://doi.org/10.1016/j.eswa.2021.115742spa
dc.relation.referencesRestrepo, N., & Clavé, S. A. (2019). Institutional Thickness and Regional Tourism Development: Lessons from Antioquia, Colombia. Sustainability 2019, Vol. 11, Page 2568, 11(9), 2568. https://doi.org/10.3390/SU11092568spa
dc.relation.referencesRoss, B., Pilz, L., Cabrera, B., Brachten, F., Neubaum, G., & Stieglitz, S. (2019). Are social bots a real threat? An agent-based model of the spiral of silence to analyse the impact of manipulative actors in social networks. European Journal of Information Systems, 28(4), 394–412. https://doi.org/10.1080/0960085X.2018.1560920spa
dc.relation.referencesSánchez Martín, J. M., Sánchez Rivero, M., & Rengifo Gallego, J. I. (2017). Análisis del equilibrio entre el potencial turístico y la oferta de alojamientos en turismo rural mediante técnicas de estadística espacial. Una aplicación a la provincia de Cáceres (España). Cuadernos de Turismo, 39, 547. https://doi.org/10.6018/turismo.39.290701spa
dc.relation.referencesSanty, R. D., Habibillah, M. I., Dimyati, Y. R., Nofia, V. S. S., Luckyardi, S., Gaol, T. V. L., & Oktafiani, D. (2021). Artificial Intelligence as Human Behavior Detection for Auto Personalization Function in Social Media Marketing. In International Journal of Research and Applied Technology (Vol. 1, Issue 1).spa
dc.relation.referencesSeo, E. J., & Park, J. W. (2018). A study on the effects of social media marketing activities on brand equity and customer response in the airline industry. Journal of Air Transport Management, 66(September 2017), 36–41. https://doi.org/10.1016/j.jairtraman.2017.09.014spa
dc.relation.referencesShahid, W., Li, Y., Staples, D., Amin, G., Hakak, S., & Ghorbani, A. (2022). Are You a Cyborg, Bot or Human?-A Survey on Detecting Fake News Spreaders. IEEE Access, 10, 27069–27083. https://doi.org/10.1109/ACCESS.2022.3157724spa
dc.relation.referencesSued, G. E. (2020). Catalog of digital techniques for research with content generated by social media users. PAAKAT: Revista de Tecnología y Sociedad, 19, 1–22. https://doi.org/10.32870/Pk.a10n19.498spa
dc.relation.referencesSullivan, K. J., Burden, M., Keniston, A., Banda, J. M., & Hunter, L. E. (2021). Characterization of Anonymous Physician Perspectives on COVID-19 Using Social Media Data. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 26, 95–106. https://doi.org/10.1142/9789811232701_0010spa
dc.relation.referencesTchakounté, F., Faissal, A., Atemkeng, M., & Ntyam, A. (2020). A reliable weighting scheme for the aggregation of crowd intelligence to detect fake news. Information (Switzerland), 11(6), 1–25. https://doi.org/10.3390/INFO11060319spa
dc.relation.referencesVieira Soares, A. L., Mendes-Filho, L., & Barbosa Cacho, A. do N. (2017). Estudios y Perspectivas en Turismo Volumen. Estudios y Perspectivas En Turismo, 26(4), 884–904.spa
dc.relation.referencesViñán-Ludeña, M. S., & de Campos, L. M. (2022). Discovering a tourism destination with social media data: BERT-based sentiment analysis. Journal of Hospitality and Tourism Technology, 13(5), 907–921. https://doi.org/10.1108/JHTT-09-2021-0259/FULL/PDFspa
dc.relation.referencesXia, P., & Huang, Z. (2017). A novel popular tourist attraction discovering approach based on geo-tagged social media big data. ISPRS International Journal of Geo-Information. https://doi.org/10.3390/ijgi6070216spa
dc.relation.referencesYang, G., & Kaun, A. (2016). Narrative Agency in Hashtag Activism: The Case of #BlackLivesMatter. Media and Communication, 4(4), 13–17. https://doi.org/10.17645/MAC.V4I4.692spa
dc.relation.referencesZhang, Y. (2019). Language in our time: An empirical analysis of hashtags. The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019, 2378–2389. https://doi.org/10.1145/3308558.3313480spa
dc.publisher.programMaestría en Gerencia Estratégica de Mercadeospa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.publisher.facultyFacultad de Sociedad, Cultura y Creatividadspa
dc.identifier.instnameinstname:Politécnico Grancolombianospa
dc.identifier.reponamereponame:Alejandría Repositorio Comunidadspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.identifier.repourlrepourl:http://alejandria.poligran.edu.cosspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TM
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem