Mostrar el registro sencillo del ítem

dc.contributor.advisorÁvila Buitrago, Gabriel Eduardo
dc.contributor.authorAngel Castro, Jeison Stiven
dc.coverage.temporalFeb 2024 - Jun 2024
dc.date.accessioned2024-10-17T13:21:20Z
dc.date.available2024-10-17T13:21:20Z
dc.date.issued2024-07-05
dc.identifier.urihttp://hdl.handle.net/10823/7382
dc.description.abstractEn el presente documento se hace una propuesta de solución a problemáticas relacionadas con la dificultad en la comprensión, falta de conocimiento y acceso a los reglamentos institucionales por parte de la comunidad estudiantil del Politécnico Grancolombiano. La existencia de esta situación se corroboró mediante una encuesta a miembros de la comunidad académica, en la cual se evidenció un bajo nivel de familiaridad con las normas y una percepción negativa hacia ellas. Para abordar esta problemática se desarrolló una aplicación web de asesoramiento normativo utilizando inteligencia artificial. Esta aplicación permite a los usuarios obtener respuestas relacionadas con situaciones o preguntas específicas y provee un acceso a la información actualizada del reglamento académico. Para el desarrollo se utilizaron técnicas de procesamiento de lenguaje natural (PLN) y clasificación de texto con redes neuronales, aprovechando modelos de lenguaje grandes (LLM) como BERT. Se realizó un proceso de selección y entrenamiento de la herramienta con información relacionada con el reglamento académico, para construir módulos que permitan manejar y presentar dicha información. Se espera que la aplicación mejore el acceso y comprensión de las normas institucionales, empoderando a los estudiantes para resolver sus dudas de manera autónoma y eficiente, lo cual no solo optimizará los recursos institucionales, sino que también fomentará una cultura educativa más colaborativa y autónoma. Para evaluar el funcionamiento de la aplicación se utilizó un instrumento de recolección de información con un grupo de estudiantes, quienes probaron la herramienta y evaluaron criterios como usabilidad, rendimiento y precisión.spa
dc.description.tableofcontentsÍndice Resumen del Proyecto... 6 TITULO DE LA PROPUESTA... 7 INTRODUCCIÓN... 8 PLANTEAMIENTO DEL PROBLEMA... 10 OBJETIVOS... 11 Objetivos específicos... 11 JUSTIFICACIÓN... 12 ALCANCE... 13 MARCO TEÓRICO... 14 Marco Teórico... 14 Estado del Arte... 16 METODOLOGÍA... 22 Análisis preliminar... 22 Árbol de problemas... 22 Encuestas... 23 Definición de tecnologías... 24 Actividades y cronograma... 25 Diseño de la solución ... 27 Requerimientos... 27 Casos de uso... 28 Arquitectura... 28 Base de datos... 29 Diseño de interfaz... 31 Desarrollo de la solución... 31 Prototipado y experimentación... 31 Entrenamiento e implementación de modelo... 37 Desarrollo de módulo de procesamiento de texto... 40 Desarrollo de backend... 41 Desarrollo de frontend... 42 Pruebas y finalización... 45 RESULTADOS... 46 Conclusiones... 48 Trabajo futuro... 49 BIBLIOGRAFÍA... 50 ANEXOS... 53spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.titleDesarrollo de un asesor normativo mediante inteligencia artificial para el reglamento estudiantil del Politécnico Grancolombianospa
dc.typebachelorThesisspa
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.title.translatedDevelopment of a regulatory advisor using artificial intelligence for the student regulations of Politécnico Grancolombianospa
dc.subject.proposalAsesor normativospa
dc.subject.proposalLLMspa
dc.subject.proposalProcesamiento de lenguaje naturalspa
dc.subject.proposalRedes neuronalesspa
dc.subject.lembInteligencia artificialspa
dc.subject.lembProcesamiento de datosspa
dc.subject.lembReglamentación académicaspa
dc.description.abstractenglishIn this document, a proposed solution is presented to address issues related to the difficulty in understanding, lack of knowledge, and limited access to institutional regulations by the student community of Politécnico Grancolombiano. The existence of this situation was confirmed through a survey conducted among members of the academic community, which revealed a low level of familiarity with the regulations and a negative perception of them. To tackle this issue, a web-based regulatory advisory application was developed using artificial intelligence. This application allows users to obtain answers related to specific situations or questions and provides access to updated information from the academic regulations. The development process utilized natural language processing (NLP) techniques and text classification with neural networks, leveraging large language models (LLMs) such as BERT. A selection and training process was conducted with information related to the academic regulations to build modules that manage and present this information effectively. The application is expected to improve access to and understanding of institutional regulations, empowering students to resolve their queries independently and efficiently. This will not only optimize institutional resources but also promote a more collaborative and autonomous educational culture. To assess the functionality of the application, an information collection tool was used with a group of students, who tested the tool and evaluated criteria such as usability, performance, and accuracy.spa
dc.subject.keywordsLLMspa
dc.subject.keywordsNatural language processingspa
dc.subject.keywordsNeural networksspa
dc.subject.keywordsRegulatory advisorspa
dc.relation.referencesNataraj, P., Devaraj, Teja, R., Kumar, M., & Gangrade, A. (2023). Development of a Legal Document AI-Chatbot. ArXiv, abs/2311.12719.spa
dc.relation.referencesQueudot, M., Charton, E., & Meurs, M. (2020). Improving Access to Justice with Legal Chatbots. Stats.spa
dc.relation.referencesCui, J., Li, Z., Yan, Y., Chen, B., & Yuan, L. (2023). Chatlaw: A Multi-Agent Collaborative Legal Assistant with Knowledge Graph Enhanced Mixture-of- Experts Large Language Model.spa
dc.relation.referencesHan, H. (2023). Potential Benefits of Employing Large Language Models in Research in Moral Education and Development. ArXiv, abs/2306.13805.spa
dc.relation.referencesMorgan, J., Paiement, A., Seisenberger, M., Williams, J., & Wyner, A.Z. (2018). A Chatbot Framework for the Children's Legal Centre. International Conference on Legal Knowledge and Information Systems.spa
dc.relation.referencesNg, J., Haller, E., & Murray, A. (2022). The ethical chatbot: A viable solution to socio-legal issues. Alternative Law Journal, 47, 308 - 313. https://doi.org/10.1177/1037969X221113598. https://researchers.cdu.edu.au/en/publications/the-ethical-chatbot-a-viablesolution- to-socio-legal-issuesspa
dc.relation.referencesDevlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. North American Chapter of the Association for Computational Linguistics.spa
dc.relation.referencesAbdulwahhab, R., Makhmari, H., & Battashi, S. (2015). An educational web application for academic advising. 2015 IEEE 8th GCC Conference & Exhibition, 1-6. https://doi.org/10.1109/IEEEGCC.2015.7060084.spa
dc.relation.referencesAly, W., Eskaf, K., & Selim, A. (2017). Fuzzy mobile expert system for academic advising. 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), 1-5. https://doi.org/10.1109/CCECE.2017.7946846.spa
dc.relation.referencesArsys (2020) Clasificación de textos con Python y Jupyter Notebooks [Código fuente]. Arsys https://www.arsys.es/blog/clasificaciontextos-pythonjupyternotebooksspa
dc.relation.referencesChurch, K.W., Chen, Z., & Ma, Y. (2021). Emerging trends: A gentle introduction to fine-tuning. Natural Language Engineering, 27, 763 - 778.spa
dc.relation.referencesNaveed, H., Khan, A.U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Barnes, N., & Mian, A.S. (2023). A Comprehensive Overview of Large Language Models. ArXiv, abs/2307.06435.spa
dc.relation.referencesMannadiar, N., & Gürsoy, K. (2019). Neural Networks for Text Classification.spa
dc.relation.referencesMinaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J. (2020). Deep Learning--based Text Classification. ACM Computing Surveys (CSUR), 54, 1 - 40.spa
dc.relation.referencesПопова, Е., Popova, E., Спицын, В., Spicyn, V., Иванова, Ю., & Ivanova, Y. (2019). Using artificial neural networks to solve text classification problems. GraphiCon'2019 Proceedings. Volume 1.spa
dc.relation.referencesSun, Z. (2023). A Short Survey of Viewing Large Language Models in Legal Aspect. ArXiv, abs/2303.09136.spa
dc.relation.referencesHmeidi, I., Al-Ayyoub, M., Abdulla, N., Almodawar, A., Abooraig, R., & Mahyoub, N. (2015). Automatic Arabic text categorization: A comprehensive comparative study. Journal of Information Science, 41, 114 - 124.spa
dc.relation.referencesZhang, X., Zhao, J.J., & LeCun, Y. (2015). Character-level Convolutional Networks for Text Classification. Neural Information Processing Systems.spa
dc.relation.referencesLiddy, E.D., Paik, W., & Yu, E.S. (1994). Text categorization for multiple users based on semantic features from a machine-readable dictionary. ACM Trans. Inf. Syst., 12, 278-295.spa
dc.relation.referencesKamruzzaman, S. (2010). Text Classification using Artificial Intelligence. ArXiv, abs/1009.4964.spa
dc.relation.referencesHoward, J., & Ruder, S. (2018). Universal Language Model Fine-tuning for Text Classification. Annual Meeting of the Association for Computational Linguistics.spa
dc.relation.referencesQasem, R., Tantour, B., & Maree, M. (2023). Towards the Exploitation of LLMbased Chatbot for Providing Legal Support to Palestinian Cooperatives. ArXiv, abs/2306.05827. https://www.mckinsey.com/capabilities/quantumblack/our-insights/globalsurvey- the-state-of-ai-in-2020?cid=other-soc-lkn-mip-mck-oth--- &sid=4255306818&linkId=105722332spa
dc.relation.referencesMinaee, S., Cambria, E., & Gao, J. (2020). Deep Learning--based Text Classification. ACM Computing Surveys (CSUR), 54, 1 - 40.spa
dc.relation.referencesDande, A.A., & Pund, D.M. (2023). A Review Study on Applications of Natural Language Processing. International Journal of Scientific Research in Science, Engineering and Technology.spa
dc.relation.referencesVanita (2024). An Extant of Natural Language Processing. International Journal For Multidisciplinary Research.spa
dc.relation.referencesYadav, R.K., Madaan, A., & Janu (2024). Comprehensive analysis of natural language processing. Global Journal of Engineering and Technology Advances.spa
dc.relation.referencesCambria, E., & White, B. (2014). Jumping NLP Curves: A Review of Natural Language Processing Research [Review Article]. IEEE Computational Intelligence Magazine, 9, 48-57.spa
dc.relation.referencesG. Suganya, R. Porkodi (2020). Prediction and Analysis of Extracting Relations using Spacy Model. International Journal of Recent Technology and Engineering.spa
dc.relation.referencesYao, L., Mao, C., & Luo, Y. (2018). Graph Convolutional Networks for Text Classification. ArXiv, abs/1809.05679.spa
dc.relation.referencesDelaforge, A., Azé, J., Bringay, S., Mollevi, C., Sallaberry, A., & Servajean, M. (2022). EBBE-Text: Explaining Neural Networks by Exploring Text Classification Decision Boundaries. IEEE Transactions on Visualization and Computer Graphics, 29, 4154-4171.spa
dc.relation.referencesGutiérrez, F., Seipp, K., Ochoa, X., Chiluiza, K., Laet, T.D., & Verbert, K. (2020). LADA: A learning analytics dashboard for academic advising. Comput. Hum. Behav., 107, 105826spa
dc.relation.referencesAlkhoori, A., Kuhail, M.A., & Alkhoori, A. (2020). UniBud: A Virtual Academic Adviser. 2020 12th Annual Undergraduate Research Conference on Applied Computing (URC), 1-4spa
dc.publisher.programIngeniería de Sistemasspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.publisher.facultyFacultad de ingeniería y Diseño e Innovaciónspa
dc.identifier.instnameinstname:Politécnico Grancolombianospa
dc.identifier.reponamereponame:Alejandría Repositorio Comunidadspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.identifier.repourlrepourl:http://alejandria.poligran.edu.cospa
dc.type.redcolhttps://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem